EfficientViT for Retail

Daniel Kim, Jason Li, Joey Zheng
Massachusetts Institute of Technology

Abstract

Al segmentation has found a variety of useful applications across industries. Auto-
motive companies use segmentation to guide self-driving vehicles. Other compa-
nies use segmentation for security and surveillance or even virtual reality applica-
tions. With that being said, many segmentation models require large computing
resources and can only be deployed to devices with significant computational re-
sources. We propose the application of EfficientViT, a lightweight family of vision
transformer models that can be run on smaller more limited compute devices, for
the particular task of retail segmentation. We use EfficientViT to segment common
retail items, allowing them to be classified by a downstream classification model.
Finally, we deploy our model to a device with limited computing resources and
successfully demonstrate segmentation and classification capabilities without GPU
accelerators.

1 Introduction

There are many useful applications of image segmentation in retail. Segmentation can be used to
categorize different products within an image, allowing retailers to manage their inventory, keep
track of stock levels, and identify which products are in demand. Customers can also take pictures of
products they like from their smartphones, and Al algorithms can segment the image to identify the
specific item, making it easier for customers to find and purchase similar products. With segmentation,
customers can even skip having to manually scan their items at the checkout as their purchases can be
gathered from image segmentation. That said, most segmentation models are computationally costly
and are unable to be deployed onto hardware devices with limited computation. For this reason, it is
important to understand how segmentation models can be modified so that they may be deployed to
hardware devices.

EfficientViT helps us to address this issue. The family of lightweight vision transformer models
introduced by Xinyu et al. reduces the memory inefficient operations commonly found in most vision
transformer models (1). This allows the model to perform well on devices with limited computing in
comparison to more demanding vision transformers. We use the EfficientViT for Segment Anything
Model to segment retail items, later classifying them for potential applications (2). We then deploy
this functionality onto a personal desktop device with limited computing for testing.

2 Relevant Works

Traditionally, for any image segmentation problem, there are two main approaches. First, is interactive
segmentation, where any class of objects may be segmented but relies on human supervision and
guidance for iterative mask refinement. Secondly, is automatic segmentation, where a set of predefined
classes of objects are segmented but require a significant amount of annotated objects. Meta Al
introduced the Segment Anything Model (SAM) for the generalization of the two approaches (2).

SAM took the idea of "prompting"” from the field of natural language process and applied it to
image segmentation. A prompt is any information that specifies what to segment in an image (e.g.
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Figure 1: Overview workflow of SAM from Figure 1 of the Segment Anything paper

foreground/background points, bounding boxes, outlines, masks, text, etc.). The output is a number
of valid masks along with confidence scores.

Along with the image segmentation model was the Segment Anything 1-Billion mask dataset (SA-1B),
which the model trained on and is publicly available for research purposes. It contains over 11 million
quality images, which was state-of-the-art at its time of release.

EfficientViT, is a new family of vision transformer models proposed by the MIT HanLab that are
efficient for high-resolution dense prediction vision tasks (1). Its novelty comes from replacing
the softmax attention module with a lightweight multi-scale linear attention module with hardware
efficient operations. It was shown that applying EfficientViT with SAM allowed a significant speedup
while maintaining quality performance.
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Figure 2: Visualization from Figure 7 of EfficientViT paper demonstrating EfficientViT vs. ViT-H
used in SAM

3 Methods

There are three main steps for our EfficientViT for Retail model: 1. segmentation, 2. partition, and
3. classification. In our study, our model has been trained to classify fruits and vegetables. Other
classification labels and retail products could be added in the future as our next step. Our workflow
diagram can be found in Figure 3.

First, when given an image of retail (fruits and vegetables), our model runs the EfficientViT model
proposed by Xinyu et al. to run the SAM model efficiently. This means, given an image that contains
different retail products and/or non-retail objects, the EfficientViT will segment every part of the
image regardless of whether they are retail products or not. Given an W x H sized image, this
first segmentation layer returns S1, Ss, ..., Sy of (W, H) segment tensors, where N is the number
of segments identified by EfficientViT. For every (¢, j) in S, (4, ) is True if the pixel (¢, j) in the
original image is part of the segment x, and False otherwise. We use these segment tensors to run our
next step, parsing.

Next, from N segment tensors the model generated in the first step, we can generate Py, P, ..., Py
parsed images where each image only includes the portion of the original image that belongs to that
specific segment. In order to achieve this goal, in our parsing step, we iterate through N segment
tensors to generate /N parsed images for all the segments. Specifically, given an original image O
with the dimension of W x H, segment tensor S, would lead to a parsed image P, where each pixel
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Figure 3: Diagram showing how images are segmented and classified

P, [i][j] in the parsed image is defined by the following formula:

are Oli][y if S, [i][j] = True
Py = { OV Sl = M
opaqueness 0 if S, [i][j] = False
Then, each parsed image P, is saved as "[original image name]_segment_[x].png" in the segmented
image folder. These images are then processed to go through the final layer of our model, classifica-
tion.

As the final step, the parsed images are classified into their labels with an image classification. To do
s0, we first needed to train our image classification model. In our model, we inherited the architecture
of the ResNet-50 model as the backbone of our classification layer (3). ResNet-50, a widely used
visual/image classification task in the Computer Vision ML field, consists of multiple layers including
Zero Padding, Convolutional, Batch Norm, ReLu, etc. The model has proven to perform superbly
on different domains of image classification, such as achieving 80.4% top-1 accuracy at resolution
224x224 on ImageNet-1K (4). To train this backbone image classification model into our specific
task—retail products classification—we used the "Fruits and Vegetables" dataset (5). This dataset
consisted of 36 classes of fruits and vegetables in total: "banana", "apple", "pear", "cucumber",
"carrot", etc.. The dataset included the train/test/validation split, where the training set consisted of
100 images, the test set with 10 images, and the validation set with 10 images per class. Because of
the limitation of our dataset, our model currently is limited to classifying the segmented images only
into one of these 36 classes.

With this trained classification layer, we can label every partitioned image into one of the 36 classes as
described above. However, among the segmented images may contain non-retail objects, incorrectly-
segmented retail objects, and retail objects that do not belong to one of the 36 labels (such as durian).
To resolve this issue, we introduced the confidence cutoff, where the partitioned images get through
the classification later only when the model labels the image with the confidence higher than the
confidence cutoff. Since our classification layer employs a multi-class classification using ResNet-50,
we can extract the level of confidence our classification model by using SoftMax on the last hidden
state of 36 nodes. Our study used the confidence cutoff of 0.78 to produce the results, but the
confidence cutoff also serves as a hyperparameter that could be tested and examined.

4 Results

Following successful deployment of our EfficientViT SAM model, we are able to segment images
containing retail items. That being said, we find that our EfficientViT may sometimes decompose a
single retail item into numerous pieces, making it difficult for our classifer to properly classify items.
Figure 4 shows an example of this. While EfficientViT is able to segment the three fruits, it also
happens to segment the stem of the banana into an image that the classifier classifies as "ginger".
That being said, our SAM model is able to capture the three fruits that present.



Apple (79.5%)

‘ Pear (99.9%)

Ginger (93.7%)

Banana (93.5%)

Figure 4: An example of an image containing multiple fruits being segmented and classified. The
numbers in the parentheses indicate the confidence with which our classification model predicted
each segmented image
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Figure 5: A graph of the Resnet-50 accuracy scores across epochs trained on a dataset of fruits and
vegetables

In regards to our Resnet-50 classifer, we find that after 25 epochs of training as shown in Figure 5,
the top-1 accuracy of the model is 95.73% when evaluated against the testing split of our fruits and
vegetables dataset. Despite this accuracy, we find that it can have trouble classifying fruits positioned
in odd orientations or have been partially hidden by other objects. This is likely a result of a lack of
such cases in the training data. Aside from these edge cases, our Resnet classifier tends to classify
fruits and vegetables with high degress of confidence, as can also be seen in Figure 4.

5 Conclusion and Future Works

In this paper, we found that combining EfficientViT model and image classification model such as
ResNet-50 could be used to produce promising visual segmentation and labeling results on real-world
application, such as retail (I). More specifically, with our classification layer that achieved the



validation accuracy of 95.73% on labeling images of 36 different fruits and vegetables, our model
can conduct segmentation, parsing, and classification tasks at one go with no human interference.

Due to time and computing constraints, we understand there are many potential improvements that
could be made to our model. For future works, we hope to train our dataset that contains much
more diverse classes of retail products besides the 36 labels used in our study. These may include
other products people can commonly find in convenience/grocery stores such as drinks, snacks, and
medicine. Moreover, this image segmentation and classification model could be applied to other
domains where efficient, speedy inference could be of great help, such as medical field (6). Finally,
we can speed up the inference and make the model more efficient by utilizing different efficiency
techniques, such as pruning and quantization, on the ResNet-50 classification layers (7).
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